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ABSTRAK

Adalah penting bagi pihak perubatan untuk mengemudi perawatan daripada 
bergantung semata-mata pada pendekatan analisis data konvensional untuk saringan 
penyakit, diagnostik dan rawatan kepada keputusan yang dikonfigurasikan dengan 
pantas melalui analisis data besar daripada algoritma kecerdasan buatan (AI). Seni 
bina pengkomputeran “kabus” dan “tepi” yang dibina dalam sistem pangkalan data 
penjagaan kesihatan dan pengawasan yang besar membolehkan aplikasi algoritma 
pembelajaran mesin (ML) untuk ramalan penyakit dan kapasiti ramalan. Semakan 
tinjauan ini menilai penggunaan pelbagai kaedah ML untuk meramal T2DM. Enjin 
carian yang digunakan ialah IEEE Xplore, JSTOR, PubMed, Sage, Scopus, Wiley dan 
WOS. Kriteria kemasukan termasuk artikel yang diterbitkan dalam tempoh enam 
tahun lalu, akses terbuka dan kajian memfokuskan pada Diabetis Melitus Jenis 2 
(T2DM) sahaja. Daripada 41 kajian, kaedah ML yang paling banyak digunakan ialah 
Random Forest (n=33) dan juga model ML terbaik yang paling banyak dijalankan 
(n=13). Kaedah ML Customised Ensemble yang disesuaikan dengan set data 
didapati menunjukkan ketepatan tertinggi. Walau bagaimanapun, kawasan kajian 
dan sampel tidak mencukupi di negara Asia Tenggara, kerana terdapat perbezaan 
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dalam demografi dan budaya yang mempengaruhi faktor risiko T2DM di mana 
sumber pengiraan dan pembangunan sistem adalah terhad. Kami menyimpulkan 
kaedah ML mampu meramal T2DM, dari perspektif sistem kebolehoperasian 
intranya yang berdaya maju untuk digunakan dalam sistem penjagaan kesihatan.

Kata kunci: Diabetis melitus jenis 2; pembelajaran mesin; ramalan

ABSTRACT

It is crucial for medical practice to navigate from solely dependent on conventional 
data-analytical approaches for disease screening, diagnostics, and treatment plans 
to decisions that are configured rapidly through big data analytics from artificial 
intelligence algorithms. The fog- and edge-computing architectures built within 
the huge healthcare database systems would allow the applications of machine 
learning (ML) algorithms for disease predictions and forecasting capacities. This 
scoping review appraised the use of multiple ML methods for type 2 diabetes mellitus 
(T2DM) prediction. Search engines used were IEEE Xplore, JSTOR, PubMed, Sage, 
Scopus, Wiley, and WOS. Inclusion criteria included articles published within the 
past six years, open access and studies that focused on T2DM only. Out of 41 
studies included, the most used ML method was Random Forest (n=33) and the 
most occurred best ML model (n=13). Customised Ensemble ML method adapted 
to the dataset was found to show the highest accuracy. However, there were 
insufficient study areas and samples in Southeast Asia countries, as there were 
differences in demographics and culture that affect the T2DM risk factors where 
computational resource and systems development were limited. We conclude ML 
methods can predict T2DM, from the system’s perspective its intra-operability is 
viable for use in healthcare systems.

Keywords: Prediction; supervised machine learning; type 2 diabetes mellitus

2045 (Galicia-Garcia et al. 2020). 
Type 2 diabetes mellitus (T2DM) is a 
condition of insulin insufficiency, and 
accounts for 90-95% of all diabetes 
cases (Tripathi & Srivastava 2006). 
Interventions to control the burden 
and complications of T2DM requires 
on-going health consultations, 
frequent blood glucose and podiatry 
monitoring, complex medication 
regimes, and lifestyle modifications; 

INTRODUCTION

Diabetes is a key non-communicable 
disease (NCD) to populations 
worldwide, posing global 
socioeconomic and healthcare 
burden. Global estimates reported 
approximately 463 million adults aged 
20 to 79 years old being afflicted with 
diabetes as of 2019, and this number 
is projected to rise to 700 million by 
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all of which pose greater burden to 
the country’s healthcare cost and the 
national budget (Rask-Madsen & King 
2013). When populations are at an 
increased risk to NCDs many national 
health systems would struggle to 
configure appropriate interventions to 
control the burden. However, crafting 
and rapidly executing appropriate 
policies or strategies would be difficult 
if surveillance data on disease burden 
are too limited, complex, or chaotic 
to execute systematic analysis in 
understanding the trends and pattern 
of the disease occurrence. 
 The rise of Big Data within health 
systems has allowed scientists to 
apply computational methods and 
machine learning (ML) algorithms for 
time series analytics for synthesis of 
disease prediction, nowcasting, and 
forecasting. ML algorithms are used for 
analysing complex datasets, extracting 
patterns, and generating accurate 
predictions. In the context of predicting 
T2DM, ML has been proven to assist 
scientists and clinicians in shortening 
the time for analysis and pattern 
prediction compared to traditional 
statistical approaches (Ngiam & Khor 
2019). In recent years, ML techniques 
have been applied extensively in 
epidemiology and public health 
research to predict various disease 
outcomes including T2DM. ML 
methods offer a promising approach 
to integrating environmental factors 
and uncovering their predictive power. 
By leveraging advanced algorithms 
such as Decision Trees (DT), Random 
Forests (RF), Support Vector Machines 
(SVM), Artificial Neural Network 
(ANN), k-nearest neighbors (KNN), 

Naive Bayes (NB), Gradient Boosting 
(GB) and Logistic Regression (LR), 
ML models can capture complex 
interactions between various risks 
factors with T2DM outcomes.

Supervised Machine Learning 
      
Three primary categories of ML 
include supervised ML, unsupervised 
ML and reinforcement learning. In this 
review, supervised ML is the primary 
type of ML used because it well suits 
two problems of interest which are 
regression and classification problems. 
These two approaches often form 
the root of prediction models. In a 
supervised ML, a labelled dataset 
undergoes training and testing phases 
to determine the performance of the 
ML technique deployed. Using the 
trained dataset, it is then fed into a real-
world dataset for prediction purposes. 
The training dataset has a “Diabetic” 
and “No Diabetic” classifier that 
separates the “True” and “False” label. 
The “True” and “False” label is 
crucial to determine the confusion 
matrix used to evaluate the ML 
performance. A confusion matrix is a 
table summarising the performance 
of a classification model. It is a useful 
tool for understanding how well 
the model can distinguish between 
different classes. The confusion matrix 
is a square table with two dimensions, 
representing the actual and predicted 
classes. The rows of the table represent 
the actual classes, while the columns 
represent the predicted classes. The 
table is divided into four quadrants: 
True Positive (TP) - The model correctly 
predicts that the sample belongs to 
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the positive class; True Negative (TN) 
- The model correctly predicts that 
the sample belongs to the negative 
class; False Positive (FP) - The model 
incorrectly predicts that the sample 
belongs to the positive class; False 
Negative (FN) - The model incorrectly 
predicts that the sample belongs to the 
negative class.
 The confusion matrix can be used to 
calculate several performance metrics, 
such as accuracy, precision, recall, and 
F1 score. Accuracy is the percentage of 
samples that are classified correctly. It 
is calculated by dividing the sum of TP 
and TN by the total number of samples. 
The precision is the percentage of 
samples that are predicted to be 
positive that are actually positive. It 
is calculated by dividing TP by TP + 
FP. The recall is the percentage of 
samples that are actually positive 
that are predicted to be positive. It is 
calculated by dividing TP by TP + FN. 
The F1 score is a weighted average of 
precision and recall. It is calculated 
by dividing 2 * (precision * recall) by 
precision + recall.
 The confusion matrix is a powerful 
tool for evaluating the performance 
of a ML model. It can be used to 
identify the types of errors that the 
model is making, and it can be used 
to improve the performance of the 
model. The advantage of using the 
confusion matrix based on metrics 
of performance is that they provide a 
simple and intuitive way to evaluate 
the performance of a classification 
model. The confusion matrix can be 
used to identify the types of errors that 
the model is making, can evaluate the 
performance of a model for multiple 

classes, and can be used to suggest 
improvements to the performance of 
the model.
 The eight most used ML techniques 
are Random Forest, Gradient Boosting, 
Logistic Regression, Support Vector 
Machines, Decision Tree, Naive 
Bayes, Artificial Neural Network, 
and k-Nearest Neighbors. We briefly 
reviewed each ML and the comparison 
was shown in Table 1.  
 This scoping review aimed to 
comprehensively evaluate and 
synthesise existing literatures on 
the application of ML methods for 
predicting T2DM based on various risk 
factors. The review identified available 
ML methods commonly used for T2DM 
prediction. This review also aimed 
to evaluate the predictive accuracy 
of ML algorithms along with the risk 
factor when specifically applied to 
T2DM. Finally, we discussed gaps and 
limitations of this review to suggest 
improvements for future works.

MATERIALS AND METHODS

Scoping reviews aims to provide an 
overview of the existing literature, 
identify needs-gaps in knowledge, 
and understand the current landscape 
of works conducted on a particular 
topic. This scoping review followed 
the five-stage framework proposed 
by Arksey and O’Malley (2005). This 
scoping review was also conducted 
using Preferred Reporting Items for 
Systematic reviews and Meta-Analyses 
extension for Scoping Reviews 
(PRISMA-ScR) Checklist (Tricco et al. 
2018).
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Type of Model Description Advantage Disadvantage

Random Forest (RF) 
(Wang et al. 2021; 
Brieman 2001)

An ensemble classifier that 
consists of many Decisions 
Tree to make predictions

Very accurate algorithm 
that is not sensitive to 
outliers and imperfect 

data.

Sensitive to the choice of 
hyperparameter tuning 
of the ML model and 

can be computationally 
expensive to train.

Gradient Boosting 
Variants

Gradient boosting 
machine which can be 
used for both regression 
and classification tasks.

Iteratively adding new 
trees to the model, each of 
which is trained to reduce 
residual errors of previous 

trees.

Computationally 
intensive, complexity, 

overfitting and sensitive 
to hyperparameters. 

Logistic Regression 
(LR) 
(Joshi et al. 2021; 
Khanam & Foo 2021; 
Li et al. 2023)

Statistical model used to 
predict the probability of a 

binary outcome

Simple and easy-to-
understand ML model that 

is relatively easy to fit to 
the data.

Only is used to predict 
binary outcomes and can 

be sensitive to outliers.

Support Vector 
Machine (SVM)
(Abbas et al. 2019; 
Firdous et al. 2022; 
Joachims 1998; 
Khanam & Foo 2021)

Find a hyperplane that 
best separates the data 
points of people with 

T2DM and people without 
T2DM 

Handle both linear and 
non-linear relationships 

between the features and 
the target variable and are 

also are not sensitive to 
outliers.

Computationally 
expensive to train and 

SVM are difficult to 
interpret.

Decision Tree (DT)
(Quinlan 1986)

Supervised ML algorithms 
that create a model that 

predicts whether a person 
has T2DM based on their 
medical history and other 

risk factor.

They can be used to 
predict both binary and 

multiclass outcomes.

Sensitive to overfitting, 
and they can be difficult 
to scale to larger datasets 

Naïve Beyes 
(Lindley 1958).

Bayes’ theorem is a 
mathematical formula that 
relates the probability of 

an event to the probability 
of its causes

Very fast, easy to train and 
can be used to handle 
both categorical and 
continuous features.

Sensitivity to outliers, 
and it generally assumes 

that features are 
independent of each 

other, which is often not 
true in real world.

Artificial Neural 
Network (ANN)
(McCulloch & Pitts 
1943)

Inspired by the human 
brain, and they can learn 

complex relationships 
between the features and 

the target variable.

Non-linearity, capable of 
parallel processing and 

generalization.

It is overfitting, has 
training complexity and 
challenging to interpret 
why they make specific 
predictions or decisions.

K-Nearest Neighbors 
(KNN) 
(Cover & Hart 1967)

Works by finding the k 
most similar data points to 
a new data point and then 
predicting the label of the 
new data point based on 

the labels of the k-Nearest 
Neighbors

Simplicity, versatility, 
robust to outliers and no 

training time needed. 

Computational 
complexity, sensitive to 

irrelevant features has an 
impact to imbalanced 
data leading to biased 

prediction.

TABLE 1: Comparison of machine learning techniques
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First Stage: Identifying the Research 
Question

Two research questions were developed 
to attain the relevant information after 
appraising the topic of discussion i.e. (i) 
What are the most used ML methods 
in predicting T2DM?; (ii) How was 
the effectiveness of ML techniques 
evaluated in the prediction of T2DM?

Second Stage: Identifying Relevant 
Studies

The inclusion criteria used in 
this review was based on the 
Population-Concept-Context (PCC) 
recommendations developed by 
Joanna Briggs Institute (Joanne Briggs 
Institute 2015), described in Table 2. 
This review excluded studies focusing 
on populations with Type 1 Diabetes 
or Gestational Diabetes. Only T2DM 
studies were focused. This review 
also excluded studies outside of the 
6-year time frame (1 January 2018 
until 31 December 2023). This was 
because the rise of popularity of ML 
usage with disease studies emerges 
especially with T2DM and this 
allowed the scoping review to focus 
on recent research and developments 
of the topic. This field which involves 
technology methodology often sees 
rapid changes. Therefore, a short time 

frame is needed to reflect the current 
landscape.
 A comprehensive search strategy 
using seven electronic databases: IEEE 
Xplore, JSTOR, PubMed, Sage, Scopus, 
Wiley and WOS were conducted. 
Studies published from 1 January 
2018 until 31 December 2023 were 
included. Keyword searches were 
applied using Boolean operators (AND, 
OR, and NOT) which combine or 
exclude keywords in a search, resulting 
in more focused and precised ((“type 
2 diabetes mellitus” OR T2DM) AND 
(“Machine Learning”)). The review 
workflow was conducted following 
the PRISMA guidelines (Figure 1).

Third Stage: Study Selection

Titles and abstracts were screened to 
ascertain the suitability of the articles. 
All records were transferred into a 
spreadsheet software program where 
irrelevant articles were excluded, and 
duplicates removed. Two reviewers 
determined the articles’ eligibility 
based on the title, abstract, and full 
text. 

Fourth Stage: Charting the Data

The selected data were extracted and 
sorted from the chosen articles. Data 
extracted include the author’s name 

Population Concept Context 

T2DM patients from original 
country of residence; patients 
registered within their local 
country database.

Any machine learning methods 
in predicting T2DM prevalence 
from studies published between 

2018 to 2023

Research articles from any 
countries, any setting; original 

research articles (excluding 
reviews or meta-analysis) that 

were written in English.

TABLE 2: Inclusion criteria
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and year, author’s country, study area, 
study size, database used, ML models 
involved, best DM predictors, best ML 
model outcome and performance. 
The best outcome was defined by the 
highest percentage of performance 
metrics of confusion matrix used in 
the studies. This included accuracy, 
precision, and F1 score that measures 
the corresponding ML models 
involved. But most of authors showed 
only accuracy or area under curve 
(AUC) for the ML performance metrics.

Fifth Stage: Collating, Summarising, 
and Reporting the Results

The information extracted was 
gathered, and consolidated on a 
descriptive table with numerical 
values, allowing interpretations 
through thematic summaries. 

RESULTS

Of 10,499 results retrieved from the 
initial search Boolean from seven 
journal article search engines, 1607 
articles were identified for screening 

FIGURE 1: PRISMA 2020 flow diagram for scoping review database search
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after others were removed because 
of non-accessible, duplicates, outside 
of the 6-year time frame and filtered 
by related subjects. Then, 80 articles 

were one-by-one further assessed for 
eligibility, answering the study’s aim.  
Finally, 41 articles were included in 
the final analyses (Table 3). The main 

Author Year Author's 
country

Study Area Database/source Study size

Agliata et al. 2023 Italy USA The National Center for Health 
Statistics (NHANES) biennial 

survey, MIMIC-III and MIMIC-IV.

13687

Aguilera-Venegas 
et al.

2023 Spain Spain Nation-wide cohort diabetes 
study

5072

Al Sadi & 
Balachandran

2023 UK Oman and 
USA

Al Shifa health system of South 
Al Batinah Province (Oman) and 

Pima Indian Diabetes Dataset

921 Oman, 
768 Pima

Bernandini et al. 2020 Italy Italy Federazione Italiana Medici di 
Medicina Generale dataset 

2433

Bhaskar et al. 2023 India India District Community Medical 
Center, India

152

Chang et al. 2022 UK USA Pima Indian Diabetes Dataset 768

Cheng et al. 2023 Taiwan Taiwan Kaohsiung Hospitals 647

Deberneh & Kim 2021 South Korea South Korea KNHANES dataset (Korea) 8454

Dritsas & Trigka 2022 Greece Bangladesh Sylhet Diabetes Hospital in 
Sylhet, Bangladesh

520

Dutta et al. 2022 Bangladesh Bangladesh Diabetes Diseases Classification 
(DDC) dataset from the 

northeastern part of South Asia 
(Bangladesh). BDHS-2011 and 

2017–2018 BDHS surveys.

(5223) 
BDHS-2011 
and (12119) 
2017–2018 

BDHS

Esmaily et al. 2018 Iran Iran MASHHAD database 9528 (1361 
DM)

Fazakis et al. 2021 Greece UK English Longitudinal Study of 
Ageing (ELSA)

2009

Ganie  et al. 2022 India India Population of Kishtwar and 
Rajouri geographical regions of 

Jammu and Kashmir

1,552 (DM 
780)

Ginting et al. 2023 Indonesia Indonesia Secondary surveillance data 
from Puskesmas Johar Baru, 

Jakarta (Indonesia)

65,533 (2,766 
DM)

Hahn et al. 2022 South Korea South Korea The Korean Genome and 
Epidemiology Study (KoGES) 

Ansan-Ansung cohort

1,425

Haneef et al. 2021 France France CONSTANCES cohort 44,659 (81 
DM)

Iparraguirre-
Villanueva et al.

2023 Peru USA Pima Indian Diabetes Dataset 768

Islam et al. 2020 Qatar Texas San Antonio Heart Study 1,791 

TABLE 3: Result of 41 included articles for ML analyses on T2DM prediction
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Islam et al. 2023 Bangladesh USA NHANES 2009-2010, 2011-2012 4,922 (2009-
2010), 4,936 
(2011-2012)

Jianga et al. 2023 China China Grassroots community service 
management information system 
in Haizhu District, Guangzhou

252,176

Jiangb et al. 2023 Japan Japan The Ministry of Healthcare, 
Labor, and Welfare (MHLW) 

(Japan)

28,292

Kopitar et al. 2020 Slovenia Slovenia 10 Slovenian primary healthcare 
institutions

3,723

Li et al. 2023 China China National physical examination 
(NPE) project in 2020, China

4,075,431 
(301,347 DM)

Liu et al. 2022 China China Screening records in Wuhan, 
China

127031

Mao et al. 2023 China China Chronic disease research 
database of Wuyishan City, 

Fujian Province

3687

Marzouk et al. 2022 Egypt USA Kaggle (Synthetic database), 
Pima Indian Diabetes Dataset

7691 (Kaggle), 
768 (Pima)

Nuankaew et al. 2021 Thailand USA and 
Mexico

Pima Indian Diabetes Dataset & 
Mendeley diabetes data (Iraq)

392 pima, 
392 

Mendeley

Ordonez-Guillen 
et al.

2023 Mexico USA and 
Iraq

NHANES (USA) and Mexican 
National Health and Nutrition 
Surveys, ENSANUT (Mexico)

10077

Perveen et al. 2019 Pakistan Canada Canadian Primary Care Sentinel 
Surveillance Network (CPCSSN)

4403

Qin et al. 2022 China South USA Lifestyle data from NHANES 
database

17883

Shin et al. 2022 Korea South Korea 
Synthetic

Health Promotion Center of 
Seoul St. Mary’s Hospital (Korea)

138643

Stolfi et al. 2020 Italy simulation M-T2D simulation data 46170

Syed et al. 2020 Saudi Arabia Saudi 
Arabia

Questionnaire (9Q) on Saudi 
Arabia population

4896

Tasin et al. 2023 Bangladesh Bangladesh 
and USA

Local textile factory 
(Bangladesh), and Pima Indian 

Diabetes Dataset

768 Pima, 
203 Local 

textile

Uddin et al. 2023 Bangladesh Bangladesh Questionnaires on Bangladeshi 
population

508

Ullah et al. 2022 Saudi Arabia USA CDC’s Behavioral Risk Factor 
Surveillance System (BRFSS) in 

2015

253680

Wang et al. 2023 China China Dongguan residents’ 
questionnaires (China)

8013 (4023 
DM)

Yilmaz 2022 Turkey USA University of California Irvine 
(UCI) database

520

Zhang et al. 2020 China China Henan Rural Cohort Study 36652

Zhang et al. 2021 China China Henan Rural Cohort Study 37730
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reasons for removal from the scoping 
review were multiple diseases studies, 
not relevant to the research questions 
and no outcome of interest were 
presented. A total of 22 countries 
represented the authors’ home 
institutions: China (n=9), Bangladesh 
(n=4), Italy and South Korea (n=3) 
each, Greece, India, Saudi Arabia, and 
United Kingdom (n=2) each, Egypt, 
France, Indonesia, Iran, Japan, Mexico, 
Pakistan, Peru, Qatar, Slovenia, Spain, 
Taiwan, Thailand, Turkey with one 
each. However, the study setting 
often was not consistent with the 
author’s country. We found a total of 
eight different study settings from the 
articles: USA (n=13), Bangladesh (n=4), 
China (n=8), South Korea (n=3), India 
(n=2), Canada, France, Indonesia, Iran, 
Italy, Iraq, Japan, Oman, Saudi Arabia, 
Slovenia, Spain, Taiwan, Texas, United 
Kingdom, Mexico with each (n=1). 
Publication years included 2018 (n=2), 
2019 (n=1), 2020 (n=6), 2021 (n=5), 
2022 (n=11) and 2023 (n=16).
 A total of 62 different ML models 
and 225 ML models all together tested 
for diabetes throughout all 41 included 
studies. The 11 most frequently used 

which was occurrence more than five 
times, includes: Random Forest (RF) 
(n=33), Logistic Regression (LR) (n=23), 
Decision Trees (DT) (n=19), Support 
Vector Machine (SVM) (n=17), Extreme 
Gradient Boost (XGB) (n=14), k-Nearest 
Neighbors (KNN) (n=14), Naive Bayes 
(NB) (n=11), Artificial Neural Network 
(ANN) (n=8), Multilayer Perceptron 
(MLP) (n=7), Gradient Boosting 
(GB) (n=6), and Ensemble learning 
algorithms representing a combination 
of multiple ML techniques into one 
model (n=5). Other ML models that not 
mentioned were presented in Table 4.
 Average accuracy and AUC of the 
best ML model in all study were more 
than 70% or 0.7. There were some of 
them that reported below 70% or 0.7 
but when compared to other ML within 
the study, the ML model still bested 
another ML model respectively. Table 
4 also showed the specific best T2DM 
predictors for the concurrent best ML 
model that successfully analysed.

DISCUSSION

We evaluated 62 different supervised 
ML techniques from all 41 articles 

Author Best DM 
predictors (high 

risk)*

ML model used** Best ML 
model**

Best model 
performance % **

Agliata et al. 
(2023)

Gender, Age, HDL, 
HbA1c, BP, TG, BMI

ADAM, SGD, RMSPROP, 
LM

Ensemble + 
ADAM

Accuracy 86, ROC 
0.934

Aguilera-Venegas 
et al. (2023)

Not specified DT, RF, KNN, NN RF Accuracy 92.91

Al Sadi & 
Balachandran 
(2023)

Gender, Age, BP, 
BMI, WC, HDL, 

FPG, HbA1c

KNN, SVM, NB, RF, DT, 
ANN, LDA

RF and DT Accuracy 98.38

TABLE 4: Result of 41 included articles of best DM predictors, ML model used, best ML 
model and performance
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Bernardini et al. 
(2020)

BP, Age, Arterial 
hypertension, BMI

SB-SVM, RF, DT, KNN, 
SVM Lin, LR, Gauss, 

MLP, DBN

SB-SVM Case 2, 3 = Recall 
74.64 and 65.33, 
AUC 81.43 and 

68.90

Bhaskar et al. 
(2023)

Concentrated Acetone 
in breath

CORNN-MLP, CORNN-
SVM, SVD-SVM, PCA-

KNN, PCA-SVM, Shallow 
CNN, CNN-MLP, CNN-

RF, CNN-SVM

CORNN-
SVM

Accuracy 98.02

Chang et al. 
(2022)

HbA1c, BMI, Age, 
Insulin and Skin 

thickness

NB, RF, DT RF (all 
features), 

NB (2 and 3 
features)

RF (Accuracy 
79.57), NB 

(Accuracy 79.13)

Cheng et al. 
(2023)

Depression and anxiety, 
HbA1c

KNN, RF RF Accuracy 84, 
AUC 95

Deberneh & 
Kim (2021)

FPG, HbA1c, Gamma-
glutamyl transferase, 

BMI

LR, RF, SVM, XGB, 
Ensemble

Ensemble Accuracy 71-73

Dritsas & Trigka 
(2022)

Polyuria, Polydipsia, 
Sudden weight loss, 
Age, Gender, Partial 

paresis

BayesNet, NB, SVM, LR, 
ANN, KNN, J48, LMT, 
RF, RT, RepTree, RotF, 

AdaBoost, SGD, Stacking

KNN and RF Accuracy 98.58 
(99.22 with 

SMOTE)

Dutta  et al. 
(2022)

BMI, Age, BP, 
Occupation

GNB, BNB, RF, DT, XGB, 
LGBM

Ensemble 
(DT + RF 
+ XGB + 
LGBM)

Accuracy 73.5, 
ROC 83.2

Esmaily et al. 
(2018)

TG, FHD, hs-CRP, BP, 
BMI 

DT, RF RF Accuracy 71.1, 
ROC 77.3

Fazakis et al. 
(2021)

Not specified NB, DT, ANN, DNN, RF, 
LR, Ensemble (Weighted 
voting, Voting, Stacking 

of LR, RF)

Ensemble 
(Weighted 

Voting LR RF)

AUC 0.884

Ganie et al. 
(2022)

Age, Gender, FHD, 
Extreme thirst, 

Urination, Drinking, 
Smoking, BMI

KNN, LR, SVM, NB, DT, 
RF, GB

GB Accuracy 97.24

Ginting et al. 
(2023)

Age, Gender, FHD, 
HPT, HbA1c, BMI

RF RF Accuracy 84

Hahn et al. 
(2022)

Genome-wide 
Polygenic Risk Score

LR, RF RF Accuracy 85.4

Haneef et al. 
(2021)

Age, Glucose blood 
test, HbA1c, Alkaline 

phosphatase test, 
Gamma glutamyle 

transferase test, 
Transaminases blood 
test, Uric acid test, 

Creatinine level blood

LR, FDA, DT, LDA LDA Accuracy 67

Iparraguirre-
Villanueva et al. 
(2023)

HbA1c, BP, Skin 
thickness, Insulin, BMI, 

Age, FHD

KNN, BNB, DT, LR, SVM KNN Accuracy 72.1
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Islam et al. 
(2020)

Age, Education level, 
Martial status, BP, 

Smoking, BMI, PA, HDL, 
Ethnicity

LR, NB, J48, MLP, RF RF Accuracy 84.9, 
AUC 0.677

Islam et al. 
(2023)

Not specified SVM, RF, Bagging, 
Boosting, NB, A1DE, 

A1DE, Ensemble

Ensemble for 
top 30 feature

Accuracy 95.94%, 
Sensitivity 100%, 
Specificity 91.5%, 

AUC 96.3%

Jianga et al. 
(2023)

BMI, Age, PA, Drinking, 
BP, Food intake

RF, XGB, KNN, 
Ensemble

RF Accuracy 91.24, 
ROC 91.15

Jiangb et al. 
(2023)

Age, Gender, BMI, 
Hyperlipidemia, HPT, 
Public pension, Health 

awareness level

LA (logistic analysis), 
LR, LDA, Hayashi's 

Quantification method 
2 (q2), RF, XGB

Average across 
all

No clear result

Kopitar et al. 
(2020)

Hyperglycemia, Age, 
HDL, Triglycerides, 

LR, Glmnet, RF, XGB, 
LGBM

LBGM Balanced and 
stable in many 

tests.

Li et al. (2023) HPT, FPG, Age, Coronary 
heart disease, Ethnicity, 

FHD, TG, WC, HDL, BMI

CART, LGBM, RF, 
XBG, MLP, LR, TabNet 

(NN)

XGB AUC 0.9122

Liu et al. 
(2022)

FBG, Education level, 
Exercise activity, Gender, 

WC

LR, DT, RF, XGB XGB AUC 0.7805, 
Sensitivity 0.6452, 
Specificity 0.7577, 
Accuracy 0.7503

Mao et al. 
(2023)

Age, FHD, IFG, IGT, 
HPT, TG, Alanine 
Aminotransferase 

and Gamma glutamyl 
transpeptidase.

XGB, RF, LBGM, 
AdaBoost, MLP, GNB

RF AUC 0.855

Marzouk et al. 
(2022)

Diabetes pedigree 
function, HbA1c, BMI, 

BP, Age

DT, SVM, RF, GB, MLP, 
ANN, KNN, LR, NB

ANN (for Pima), 
DT and GB 

(for synthetic 
Kaggle)

(ANN Pima) 
Precision 82, 

Accuracy 81.6993 
(DT) Precision 90, 
Accuracy 87.37 

(GB) Precision 88, 
Accuracy 87.49

Nuankaew et 
al. (2021)

Increased level of HDL 
particularly in women

AWOD, KNN, SVM, 
RF, DL

AWOD Accuracy 93.22% 
(Pima), Accuracy 

98.95% (Mendeley 
data)

Ordonez-
Guillen et al. 
(2023)

Age, BMI, HbA1c, FPG, 
Insulin

SVM, KNN, MLP, 
SNNN

SVM and MLP Accuracy 98.8% 
and 98.9%

Perveen et al. 
(2019

FPG DT, NB NB with 
K-medoids 

under sampling

Average ROC 86%

Qin et al. 
(2022)

Sleep time, Energy, Age CATBoost, XGB, RF, 
LR, SVM

CATBoost Accuracy 82.1%, 
AUC 0.83

Shin et al. 
(2022)

FPG, BMI, gamma-GTP, 
Age, WC

GB, RF GB Accuracy 0.815

Stolfi et al. 
(2020)

BMI, FPG, TNF LR, Polynomial degree, 
Multivariate RF

RF MSEin 0.01991, 
MSEout 0.02769
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Syed et al. 
(2020)

Region, Gender, BMI, 
Healthy diet, BP, 

Smoking

LR, Average perceptron, 
NB , ANN, SVM, LD 

SVM, Decision jungle, 
Decision forest, Boosted 

DT

Decision Forest Accuracy 0.821, 
Precision 0.776, 
Recall 0.89, AUC 
0.867, F1 score 

0.829

Tasin et al. 
(2023)

HbA1c, BMI, Age, Skin 
thickness

DT, SVM, RF, LR, KNN, 
Bagging, Adaboost, XGB, 

Voting

XGB Accuracy 81%, F1 
coefficient 0.81, 

AUC 0.84

Uddin et al. 
(2023)

Age, Extreme thirst, FHM DT, LR, SVM, GB, XGB, 
RF, Ensemble

Ensemble Accuracy 0.876

Ullah et al. 
(2022)

BMI, Age, Insulin 
resistance, HPT

KNN, RF, XGB, Bagging, 
AB ensemble

KNN Accuracy 98.38%, 
ROC 0.98

Wang et al. 
(2021)

Potato consumption, 
Fish consumption, TC, 

FPG, HDL

LR, SVM, BPNN, CART, 
C4.5 (DT), DNN

BPNN Accuracy 93.7%, 
Precision 94.6%, 

Recall 92.8%, AUC 
97.7%

Yilmaz 
(2022)

Polyuria, Polydipsia, 
Sudden weight loss, 

Partial paresis

NB, LR, DT, RF, SVM, 
XGB, Proposed Hybrid 

XGB, KNN

Proposed 
Hybrid XGB

Accuracy 97.26% 
and 95.16%

Zhang et al. 
(2020)

Urine glucose, Sweet 
flavor, FDM, Waist to 

hip ratio, Age, HPT, HR, 
Creatine

LR, CART, ANN, SVM, 
RF, GB

GB AUC 0.872

Zhang et al. 
(2021)

Age (older), Gender 
(woman), Education 

level (less), FHD (yes), 
waist to hip ratio (high), 

HR (high), BP (high)

LR, ANN, XGB, RF, GB, 
JBM

JBM AUC 0.885, Recall 
0.847

Zou et al. Not specified DT, NN, RF RF Accuracy 80.84%

*Note: High-Density Lipoprotein (HDL), Triglycerides (TG), Hemoglobin A1C Glucose Blood 
Level (HbA1c), Blood Pressure (BP), Physical Activity (PA), Fasting Plasma Glucose (FPG), Body 
Mass Index (BMI), Waist Circumference (WC), Hypertension (HPT), Impaired Glucose Tolerance 
(IGT), Impaired Fasting Glycaemia (IFG), Total Cholesterol (TC), Family History Diabetes (FHD), 
Heart Rate (HR), Tumor Necrosis Factor (TNF), High sensitivity C-reactive Protein (hs-CRP)

**Note: Adaptive Boosting (AB/AdaBoost), Adaptive Moment Estimation (ADAM), Artificial Neural Network 
(ANN), Neural Network (NN), Average Weighted Objective Distance (AWOD), Bayesian Network (BayesNet), 
Bernouli Naïve Bayes (BNB), Back Propagation Neural Network (BPNN), Categorical Boosting (CATBoost), 
Classification and Regression Tree (CART), Correlational Neural Network (CORNN), Convolutional Neural 
Network (CNN), Deep Belief Network (DBN), Deep Learning (DL), Deep Neural Network (DNN), Decision 
Tree (DT), Flexible Discriminant Analysis (FDA), Gradient Boosting (GB), Regularised generalised linear 
model (Glemnet), Gaussian Naïve Bayes (GNB), Decision Tree based on Iterative Dichtomiser 3 (J48), Joint 
Bagging-Boosting (JBM), k-Nearest Neighbor (KNN), Localised multiple kernel-SVM (LD-SVM), Logistic 
Analysis (LA), Linear Discriminant Analysis (LDA), Light Gradient Boosting Machine (LGBM), Levenberg-
Marquardt (LM), Logistic Model Tree (LMT), Logistic Regression (LR), Multilayer Perceptron (MLP), Naïve 
Bayes (NB), Principal Component Analysis (PCA), Reduce Error Pruning Tree (RepTree), Ensemble of 
Naïve Bayes (A1DE). Random Forest (RF), Root Mean Squared Propagation (RMSPROP), Rotation Forest 
(RotF), Suppport Vector Machine (SVM), Sparse Balanced-SVM (SB-SVM), Stochastic gradient descent 
(SGD), Self-Normalized Neural Network (SNNN), Singular Value Decomposition-SVM (SVD-SVM), 
Extreme Gradient Boosting (XGB), Receiver operating characteristic (ROC), Area under the curve (AUC).
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included in our review. Most studies 
originated from China, Bangladesh 
and South Korea. However, some of 
those studies did not project the study 
setting of their home country. USA had 
the highest occurrence of study setting 
(n=13), followed by China (n=8). 
This showed that the bibliographies 
retrieved do not consistently report 
works from authors home country.  
So, there is no equal contribution to 
the corresponding T2DM analyses 
on behalf of the author’s country. 
Plausible explanations are authors 
from these countries would utilise 
countries that have higher risk or 
prevalence for diabetes, as ML 
algorithms require huge datasets to be 
executed via computational methods. 
Next, high-income countries (e.g. the 
USA and China) invest largely on big 
data analytics, hence are capable to 
building huge databases with open 
data sharing policies to scientists 
from different countries that allows 
prediction of T2DM at the global or 
multi-country perspective. This also 
showed that datasets from the USA 
are abundant and readily used by 
everyone to tinker and train their own 
proposed ML model such as PIMA 
Indian Diabetes database which is the 
most used database in this scoping 
review (n=6). However, there are risks 
of bias as there are definite differences 
in demographic and social aspects 
in local risk factors within different 
countries (Celi et al. 2022). There are 
insufficient datasets from Southeast 
Asia countries despite regional high 
prevalence of T2DM cases, due to 
a shared common ground of rapid 
urbanisation, lifestyle changes, obesity 

rates, genetics, and healthcare access 
which affect local risk factors for T2DM 
(ASEAN Sustainable Urbanisation 
2022; Ramachandran & Snehalatha 
2010). Despite accelerated risks, these 
countries have weaker surveillance 
systems and lack of large, integrated 
databases to develop artificial 
intelligence capacities. 

Improvements for ML Techniques

Ensemble methods are a type of 
ML algorithm that combines the 
predictions of multiple base learners 
to improve the overall performance 
of the model. They are often used to 
improve the accuracy, robustness, 
and generalisation of ML models. 
Most popular ensemble models are 
Bagging, Boosting and Random Forest. 
Ensembles can also help to reduce the 
variance of the predictions, which can 
make the predictions more reliable.
 But all in all, to achieve the best 
performance of disease prediction, 
the specific objective, problem, and 
data available, with an extra help 
from additional ML data preprocessor 
such as SMOTE (Synthetic Minority 
Oversampling Technique) will 
tremendously increase the accuracy 
(Alghamdi et al. 2017). ML methods 
also can enhance performance further 
using Feature Selection techniques, 
data pre-processing (e.g., SMOTE), 
hyperparameter tuning using “Grid 
Search.”
 In nine out of 41 study analysed, 
specially created and modified ML 
that suits the dataset of each researcher 
got the best model in their respective 
study. These are ADAM Ensemble 
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model (Agliata et al. 2023), Average 
Weighted Objective Distance (AWOD) 
model (Nuankaew et al. 2021), Back 
Propagation Neural Network (BPNN) 
model (Wang et al. 2023), CATBoost 
(Qin et al. 2022), Correlational Neural 
Network (CORNN-SVM) model 
(Bhaskar et al. 2023), Decision Forest 
(Syed et al. 2020), Joint Bagging-
Boosting (Zhang et al. 2021), proposed 
hybrid XGB (Yilmaz 2022) and Sparse 
Balanced-SVM (Bernardini et al. 2020). 
These custom models were catered for 
the specific task that is to achieve the 
highest accuracy and AUC compared 
to other model that were tested 
together considering the T2DM risk 
factor that has been feature selected 
beforehand. Combination of feature 
selection method to carefully allowing 
the best outcome to the proposed 
ML methodology achieve the best 
predictive capability.

Improvements for Current Study 
Limitations

Many of the reviewed articles focused 
on basic demographic risk factors of 
T2DM; there was no “external risk 
factors” such as built environment in 
T2DM analysis. Risk factors of most 
studies used basic census data such as 
age, gender, occupation, educational 
level, family history (diabetic), 
smoking, drinking alcohol, physical 
activity, etc. As well as anthropometry 
and biochemical factors such as blood 
pressure, blood test, cholesterol level, 
BMI, etc. 
 A study by Qin et al. (2022) showed 
a unique risk factor comprised of 
lifestyle variables correlates with 

T2DM prediction. The study utilises 
the NHANES database, USA which 
includes all basic demographics, 
alcohol intake, smoking status, sleeping 
hours, dietary, laboratory, and physical 
examination. The best ML model was 
CATBoost with accuracy 82.1% and 
AUC of 0.83. Combination of complete 
and balanced sets of biological data 
with lifestyle data can further improve 
the analysis towards ‘real-time’ and 
closer to human behaviour analysis for 
diabetes prediction.
 A study by Jiang et al. (2023) in 
Japan proved that they have found a 
new DM predictor which are public 
pension and health awareness level 
that correlated to prevalence of T2DM. 
Different demographic properties of 
different socioeconomic attributes 
could lead to the possibility of action 
that pushed into DM risk factor 
territory. 
 A study by Bhaskar et al. (2023) 
was carried out in India where they 
proposed a methodology to detect 
Diabetes Mellitus through sensing 
chemical content when tested through 
breathing with the clinical apparatus. 
This method might be useful because 
of the novelty and detection of acetone 
content in breathing has been proved 
to correlate with prevalence of T2DM. 
 A study by Stolfi et al. (2020) has one 
uniqueness which is their database is 
fully simulated and fabricated (virtual 
subjects). This means that the study 
does not required the fuss of collecting 
clinical data. But the drawback is 
that the data is fully synthetic and 
not reflecting any real situation even 
if the data is simulated. There will be 
bias to the result because of human 
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randomness is something that cannot 
be simulated easily.
 A study by Ganie et al. (2022) also 
has similar risk factor variables which 
are lifestyle biological features. These 
lifestyle features include age, sex, 
family history of diabetes, smoking, 
alcohol intake, thirst level, urination, 
BMI, fatigue level and diabetes status. 
Analysis that uses lifestyle parameters 
may provide better results on external 
prevention ideas to reduce diabetes 
prevalence. The database was from 
the Kishtwar and Rajouri geographical 
regions of Jammu and Kashmir, India. 
The best ML model was GB with 
accuracy of 97.2%. Another unique 
risk factor study by Hahn et al. (2022) 
included genome-wide polygenic risk 
score and metabolic profile as their risk 
factor to predict T2DM. The database 
used was from The Korean Genome 
and Epidemiology Study (KoGES) 
Ansan-Ansung cohort. The best ML 
model was RF with accuracy of 85.4%.

Limitation

Future studies associated with T2DM 
should test additional possible risk 
factors that may be associated with 
the prevalence of T2DM worldwide 
which may be beneficial to policy 
makers. We also recommend further 
studies in Southeast Asian countries as 
these may bring additional, local risk 
factors to light. Each ML technique 
has its own strengths and weaknesses. 
Although Random Forest has the 
highest occurrence in the best ML 
models in the 41 included articles 
reviewed, that does not mean that it 
is the best technique for most used 

cases. Because different risk factors 
play different roles in determining 
which ML method is most suited for 
the prediction task, the critical task of 
properly selecting ML techniques must 
be taken seriously.
 There are some limitations to the 
study. We cannot rule out the possibility 
that we did not find any relevant studies 
despite using broad search terms and 
we would not have found any newer 
studies described only in conference 
proceedings or unpublished studies. 
Papers that were correctly excluded 
(according to our criteria) may still 
be useful for T2DM prediction, and 
further review of these may suggest 
new methodologies for generating 
T2DM predictions. The review also 
cannot be used as a definitive guide 
to prediction approaches with higher 
predictive skill, because settings and 
methodologies varied greatly. Because 
of this diversity, we approached the 
review as a scoping rather than a 
systematic review. Furthermore, the 
goal was not to provide detailed 
critiques of ML methodologies. Such 
an evaluation would be useful, but 
we believe that a broader review of 
prediction applications provides the 
context for this.
 There was also limitation on the 
ML algorithm - there is either too 
much sample data or too little data. A 
small sample may not be adequately 
representing the underlying 
distribution of the data. Thus, this can 
lead to biased model training because 
of the higher variability, making it 
challenging to discern true patterns. 
Small samples also are more sensitive 
to influence of outliers which can have 
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a disproportionate impact on model 
training, leading to skewed predictions. 
Another side of the problem is that if 
the sample size is too large. This will 
impact on the computational resources 
and will also be time consuming. 
Beyond a certain point, adding more 
data might not significantly improve 
model performance. Researchers must 
find the perfect law of diminishing 
returns to get the optimal sample 
size so that we decrease the risk of 
drawing incorrect conclusions about 
the prediction of our ML model.

CONCLUSION

Based on the studies reviewed, we 
conclude that a correct choice of ML 
technique, combined with additional 
supplementary enhancements on top 
of the ML model can help boost the 
prediction performance. Generally, 
an ensemble method or a “specially 
calculated model” is going to generate 
higher accuracy because of the 
complexity of the combined ML 
algorithm, much like Random Forest 
(an ensemble of Decision Trees). 
Our study also reveals that many ML 
applications to the study of T2DM 
are conducted on data outside the 
authors’ country of residence. The 
limited number of studies meeting 
these criteria suggest a need for 
increased effort toward developing in-
country data resources to support ML 
for T2DM and increase chances for use 
for the development and evaluation 
of local prevention and treatment 
options. The study also emphasises the 
necessity of utilising ML techniques in 
healthcare practices to enhance time 

management and workload, potentially 
leading to reduction of healthcare 
burden. The medical community can 
make educated judgements and put 
preventive measures into place thanks 
to this knowledge, which ultimately 
may help to delay the spread of 
disease. The findings of this scoping 
review can contribute to the growing 
body of knowledge on ML applications 
in T2DM prediction. By elucidating the 
relationship between environmental 
factors and T2DM risk, this review 
has the potential to inform public 
health initiatives, policy-making, and 
clinical decision-making. Furthermore, 
the review will serve as a valuable 
resource for researchers, practitioners, 
and policymakers working at the 
intersection of epidemiology and ML.

ACKNOWLEDGEMENT

This work was supported by the 
Ministry of Higher Education (MOHE) 
Malaysia Fundamental Research 
Grant Scheme (FRGS/1/2022/SKK04/
UKM/01/1) and Universiti Kebangsaan 
Malaysia for research management.

AUTHOR CONTRIBUTIONS

M.F.M.R., M.R.A.M., K.N.A.M. 
involved in the conceptualisation, 
methodology, extensive search of 
articles, critical review of articles, result 
synthesis and original draft write-up. 
N.S., K.G., F.I.M. and L.A.W reviewed 
the final manuscript. 

ETHIC DECLARATION

Not applicable.



397

Predicting T2DM Prevalence using Machine Learning Med & Health Aug 2024;19(2): 380-399

FUNDING

The authors received funding from the 
Ministry of Higher Education (MOHE) 
Malaysia Fundamental Research Grant 
Scheme with the reference number of 
FRGS/1/2022/SKK04/UKM/01/1.

DATA AVAILABILITY STATEMENT

The data that support the findings 
of this study are available from the 
corresponding authors upon request.

CONFLICTS OF INTEREST

The authors declare no conflict of 
interest.

REFERENCES
Abbas, H.T., Alic, L., Erraquntla, M., Ji, J.X., Abdul-

Ghani, M., Abbasi, Q.H., Qaraqe, M.K. 2019. 
Predicting long-term type 2 diabetes with 
support vector machine using oral glucose 
tolerance test. PLoS One 14(12): e0219636. 

Agliata, A., Giordano, D., Bardozzo, F., Bottiglieri, 
S., Facchiano, A., Tagliaferri, R. 2023. Machine 
learning as a support for the diagnosis of type 2 
diabetes. Int J Mol Sci 24(7): 6775.

Aguilera-Venegas, G., López-Molina, A., Rojo-
Martínez, G., Galán-García, J.L. 2023. 
Comparing and tuning machine learning 
algorithms to predict type 2 diabetes mellitus. J 
Comput Appl Math 427: 115115.

Alghamdi, M., Al-Mallah, M., Keteyian, S., Brawner, 
C., Ehrman, J., Sakr, S. 2017. Predicting diabetes 
mellitus using SMOTE and ensemble machine 
learning approach: The Henry Ford exercise 
testing (FIT) project. PLoS One 12(7): e0179805.  

Al Sadi, K., Balachandran, W. 2023. Prediction model 
of type 2 diabetes mellitus for oman prediabetes 
patients using artificial neural network and six 
machine learning classifiers. Appl Sci 13(4): 
2344.

Arksey, H., O’Malley, L. 2005. Scoping studies: 
Towards a methodological framework. Int. J. 
Social Res. Methodol. Theory Pract 8: 19-2.

ASEAN Sustainable Urbanization Report 2022. 2022. 
Sustainable Cities towards 2025 and Beyond. 
ISBN 978-623-5429-16-8 (EPUB).

Bernardini, M., Romeo, L., Misericordia, P., Frontoni, 
E. 2020. Discovering the type 2 diabetes in 
electronic health records using the sparse 
balanced support vector machine. IEEE J 
Biomed Health Inform 24(1): 235-46.

Bhaskar, N., Bairagi, V., Boonchieng, E., Munot, 
M.V. 2023. Automated detection of diabetes 
from exhaled human breath using deep hybrid 
architecture. IEEE Access 11: 51712-22.

Breiman, L. 2001. Random forests. Mach Learn 45(1): 
5-32. 

Celi, L.A., Cellini, J., Charpignon, M-L., Dee, E.C., 
Dernoncourt, F., Eber, R., Mitchell, W.G., 
Moukheiber, L., Schirmer, J., Situ, J., Paguio, 
J., Park, J., Wawira, J.G., Yao, S. 2022. Sources 
of bias in artificial intelligence that perpetuate 
healthcare disparities - A global review. PLOS 
Digit Health 1(3): e0000022.

Chang, V., Bailey, J., Xu, Q.A., Sun, Z. 2022. Pima 
Indians diabetes mellitus classification based 
on machine learning (ML) algorithms. Neural 
Comput Applic 35: 16157-73.

Cheng, Y.L., Wu, Y.R., Lin, K.D., Lin, C.R., Lin, I.M. 
2023. Using machine learning for the risk 
factors classification of glycemic control in type 
2 diabetes mellitus. Healthcare (Basel) 11(8): 
1141. 

Cover, T., Hart. P. 1967. Nearest neighbor pattern 
classification. IEEE Trans Inf Theory 13(1): 21-7.

Deberneh, H.M., Kim, I. 2021. Prediction of type 2 
diabetes based on machine learning algorithm. 
Int J Environ Res Public Health 18(6): 3317.

Dritsas, E., Trigka, M. 2022. Data-driven machine-
learning methods for diabetes risk prediction. 
Sensors 22(14): 5304.

Dutta, A., Hasan, M.K., Ahmad, M., Awal, M.A., 
Islam, M.A., Masud, M., Meshref, H. 2022. 
Early prediction of diabetes using an ensemble 
of machine learning models. Int J Environ Res 
Public Health 19(19): 12378.

Esmaily, H., Tayefi, M., Doosti, H., Ghayour-
Mobarhan, M., Nezami, H., Amirabadizadeh, 
A. 2018. A comparison between decision 
tree and random forest in determining the risk 
factors associated with type 2 diabetes. J Res 
Health Sci 18(2): 412.

Fazakis, N., Kocsis, O., Dritsas, E., Alexiou, S., 
Fakotakis, N., Moustakas, K. 2021. Machine 
learning tools for long-term type 2 diabetes risk 
prediction. IEEE Access 9: 103737-57.

Firdous, S., Wagai, G.A., Sharma, K. 2022. A survey 
on diabetes risk prediction using machine 
learning approaches. J Family Med Prim Care 
11(11): 6929-34. 

Galicia-Garcia, U., Benito-Vicente, A., Jebari, S., 
Larrea-Sebal, A., Siddiqi, H., Uribe, K.B., 
Ostolaza, H., Martin, C. 2020. Pathophysiology 
of type 2 diabetes mellitus. Int J Mol Sci 21: 
6275. 



398

Med & Health Aug 2024;19(2): 380-399 Mohd Rizal M.F. et al.  

Ganie, S.M., Malik, M.B., Arif, T. 2022. Performance 
analysis and prediction of type 2 diabetes 
mellitus based on lifestyle data using machine 
learning approaches. J Diabetes Metab Disord 
21(1): 339-52.

Ginting, J.B., Suci, T., Ginting, C.N., Girsang, E. 
2023. Early detection system of risk factors for 
diabetes mellitus type 2 utilization of machine 
learning-random forest. J Family Community 
Med 30(3): 171-9.

Hahn, S.J., Kim, S., Choi, Y.S., Lee, J., Kang, J. 2022. 
Prediction of type 2 diabetes using genome-
wide polygenic risk score and metabolic 
profiles: A machine learning analysis of 
population-based 10-year prospective cohort 
study. EBioMedicine 86: 104383.

Haneef, R., Fuentes, S., Fosse-Edorh, S., Hrzic, 
R., Kab, S., Cosson, E., Gallay, A. 2021. Use 
of artificial intelligence for public health 
surveillance: A case study to develop a Machine 
Learning-algorithm to estimate the incidence of 
diabetes mellitus in France. Arch Public Health 
79(1): 168.

Hosmer, D.W., Lemeshow, S., Sturdivant, R.X. 2013. 
Applied logistic regression. John Wiley & Sons 
Inc. 

Iparraguirre-Villanueva, O., Espinola-Linares, K., 
Flores Castaneda, R.O., Cabanillas-Carbonell, 
M. 2023. Application of machine learning 
models for early detection and accurate 
classification of type 2 diabetes. Diagnostics 
13(14): 2383.

Islam, M.M., Rahman, M.J., Menhazul Abedin, 
M., Ahammed, B., Ali, M., Ahmed, N., 
Maniruzzaman, M. 2023. Identification of the 
risk factors of type 2 diabetes and its prediction 
using machine learning techniques. Health Syst 
12(2): 243-54.

Islam, M.S., Qaraqe, M.K., Belhaouari, S.B., Abdul-
Ghani, M.A. 2020. Advanced techniques for 
predicting the future progression of type 2 
diabetes. IEEE Access 8: 120537-47.

Jianga, L., Xia, Z., Zhu, R., Gong, H., Wang, J., Li, J., 
Wang, L. 2023. Diabetes risk prediction model 
based on community follow-up data using 
machine learning. Prev Med Rep 35: 102358.

Jiangb, P., Suzuki, H., Obi, T. 2023. Interpretable 
machine learning analysis to identify risk factors 
for diabetes using the anonymous living census 
data of Japan. Health Technol 13(1): 119-31.

Joachims, T. 1998. Making large-scale SVM learning 
practical. SFB 475: Komplexitätsreduktion 
Multivariaten Datenstrukturen, Univ. Dortmund, 
Dortmund, Tech. Rep. No. 1998: 28.

Joanne Briggs Institute. 2015. Methodology for 
JBI Scoping Reviews; Joanne Briggs Institute: 
Adelaide, Australia; 1-24.

Joshi, R.D., Dhakal, C.K. 2021. Predicting type 2 
diabetes using logistic regression and machine 

learning approaches. Int J Environ Res Public 
Health 18(14): 7346. 

Khanam, J.J., Foo, S.Y. 2021. A comparison of machine 
learning algorithms for diabetes prediction. ICT 
Express 7(4): 432-9.

Kopitar, L., Kocbek, P., Cilar, L., Sheikh, A., Stiglic, G. 
2020. Early detection of type 2 diabetes mellitus 
using machine learning-based prediction 
models. Sci Rep 10(1): 11981.

Li, L., Cheng, Y., Ji, W., Liu, M., Hu, Z., Yang, Y., 
Wang, Y., Zhou, Y. 2023. Machine learning 
for predicting diabetes risk in Western China 
adults. Diabetol Metab Syndr 15(1): 165. 

Lindley, D.V. 1958. Fiducial distributions and 
Bayes’ theorem. J Royal Stat Soc Series B 
(Methodological). 1: 102-7.

Liu, Q., Zhang, M., He, Y., Zhang, L., Zou, J., Yan, 
Y., Guo, Y. 2022. Predicting the risk of incident 
type 2 diabetes mellitus in Chinese elderly using 
machine learning techniques. J Pers Med 12(6): 
905.

Mao, Y., Zhu, Z., Pan, S., Lin, W., Liang, J., Huang, H., 
Li, L., Wen, J., Chen, G. 2023. Value of machine 
learning algorithms for predicting diabetes risk: 
A subset analysis from a real-world retrospective 
cohort study. J Diabetes Investig 14(2): 309-20.

Marzouk, R., Alluhaidan, A.S., El Rahman, S.A. 2022. 
An analytical predictive models and secure 
web-based personalized diabetes monitoring 
system. IEEE Access 10: 105657-73.

McCulloch, W.S., Pitts, W. 1943. A logical calculus 
of the ideas immanent in nervous activity. Bull 
Math Biophys 5(4): 115-33.

Ngiam, K.Y., Khor, I.W. 2019. Big data and machine 
learning algorithms for health-care delivery. 
Lancet Oncol 20(5): e262–e273.

Nuankaew, P., Chaising, S., Temdee, P. 2021. Average 
weighted objective distance-based method 
for type 2 diabetes prediction. IEEE Access 9: 
137015-28.

Ordonez-Guillen, N.E., Gonzalez-Compean, J.L., 
Lopez-Arevalo, I., Contreras-Murillo, M., 
Aldana-Bobadilla, E. 2023. Machine learning 
based study for the classification of Type 2 
diabetes mellitus subtypes. BioData Min 16(1): 
24.

Perveen, S., Shahbaz, M., Keshavjee, K., Guergachi, 
A. 2019. Metabolic syndrome and development 
of diabetes mellitus: Predictive modeling based 
on machine learning techniques. IEEE Access 7: 
1365-75.

Qin, Y., Wu, J., Xiao, W., Wang, K., Huang, A., Liu, 
B., Yu, J., Li, C., Yu, F., Ren, Z. 2022. Machine 
learning models for data-driven prediction 
of diabetes by lifestyle type. Int J Environ Res 
Public Health 19(22): 15027.

Quinlan, J.R. 1986. Induction of decision trees. Mach 
Learn 1(1): 81-106.

Ramachandran, A, Snehalatha, C. 2010. Rising 



399

Predicting T2DM Prevalence using Machine Learning Med & Health Aug 2024;19(2): 380-399

burden of obesity in Asia. J Obes 2010: 868573. 
Rask-Madsen, C., King, G.L. 2013. Vascular 

complications of diabetes: Mechanisms of 
injury and protective factors. Cell Metab 17: 
20-33. 

Shin, J., Kim, J., Lee, C., Yoon, J.Y., Kim, S., Song, 
S., Kim, H.S. 2022. Development of various 
diabetes prediction models using machine 
learning techniques. Diabetes Metab J 46(4): 
650-7.

Stolfi, P., Valentini, I., Palumbo, M.C., Tieri, P., 
Grignolio, A., Castiglione, F. 2020. Potential 
predictors of type-2 diabetes risk: Machine 
learning, synthetic data and wearable health 
devices. BMC Bioinformatics 21(17): 508.

Syed, A.H., Khan, T. 2020. Machine learning-based 
application for predicting risk of type 2 diabetes 
mellitus (T2DM) in Saudi Arabia: A retrospective 
cross-sectional study. IEEE Access 8: 199539-61.

Tasin, I., Nabil, T.U., Islam, S., Khan, R. 2023. 
Diabetes prediction using machine learning and 
explainable AI techniques. Healthc Technol Lett 
10(1-2): 1-10.

Tricco, A.C., Lillie, E., Zarin W, et al. 2018. PRISMA 
extension for scoping reviews (PRISMA-ScR): 
Checklist and explanation. Ann Intern Med 
169: 467-73.

Tripathi, B.K., Srivastava, A.K. 2006. Diabetes 
mellitus: Complications and therapeutics. Med 
Sci Monit 12: RA130-47.

Uddin, M.J., Ahamad, M.M., Hoque, M.N., Walid, 
M.A.A., Aktar, S., Alotaibi, N., Alyami, S.A., 
Kabir, M.A., Moni, M.A. 2023. A comparison of 
machine learning techniques for the detection 
of type-2 diabetes mellitus: Experiences from 
Bangladesh. Information 14(7): 376.

Ullah, Z., Saleem, F., Jamjoom, M., Fakieh, B., Kateb, 
F., Ali, A.M., Shah, B. 2022. Detecting high-risk 
factors and early diagnosis of diabetes using 
machine learning methods. Comput Intell 
Neurosci 29: 2557795. 

Wang, S., Chen, R., Wang, S., Kong, D., Cao, R., Lin, 
C., Luo, L., Huang, J., Zhang, Q., Yu, H., Ding, 
Y.L. 2023. Comparative study on risk prediction 
model of type 2 diabetes based on machine 
learning theory: A cross-sectional study. BMJ 
Open 13(8): e069018.

Wang, X., Zhai, M., Ren, Z., R, H., Li, M., Quan, D., 
Chen, L., Qiu, L. 2021. Exploratory study on 
classification of diabetes mellitus through a 
combined Random Forest Classifier. BMC Med 
Inform Decis Mak 21: 105. 

Yilmaz, A. 2022. Prediction of type 2 diabetes mellitus 
using feature selection-based machine learning 
algorithms. Health Problems of Civilization 
16(2): 128-39.

Zhang, L., Wang, Y., Niu, M., Wang, C., Wang, Z. 
2020. Machine learning for characterizing risk 
of type 2 diabetes mellitus in a rural Chinese 
population: the Henan rural cohort study. Sci 
Rep 10(1): 4406.

Zhang, L., Wang, Y., Niu, M., Wang, C., Wang, Z. 
2021. Nonlaboratory-based risk assessment 
model for type 2 diabetes mellitus screening 
in chinese rural population: A joint bagging-
boosting model. IEEE J Biomed Health Inform 
25(10): 4005-4016.

Zou, Q., Qu, K., Luo, Y., Yin, D., Ju, Y., Tang, H. 
2018. Predicting diabetes mellitus with machine 
learning techniques. Front Genet 9: 515.


